3.2.48 \(\int \frac {(a+b \tanh ^{-1}(\frac {c}{x}))^2}{x^2} \, dx\) [148]

Optimal. Leaf size=87 \[ -\frac {\left (a+b \coth ^{-1}\left (\frac {x}{c}\right )\right )^2}{c}-\frac {\left (a+b \coth ^{-1}\left (\frac {x}{c}\right )\right )^2}{x}+\frac {2 b \left (a+b \coth ^{-1}\left (\frac {x}{c}\right )\right ) \log \left (\frac {2}{1-\frac {c}{x}}\right )}{c}+\frac {b^2 \text {PolyLog}\left (2,1-\frac {2}{1-\frac {c}{x}}\right )}{c} \]

[Out]

-(a+b*arccoth(x/c))^2/c-(a+b*arccoth(x/c))^2/x+2*b*(a+b*arccoth(x/c))*ln(2/(1-c/x))/c+b^2*polylog(2,1-2/(1-c/x
))/c

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {6039, 6021, 6131, 6055, 2449, 2352} \begin {gather*} -\frac {\left (a+b \coth ^{-1}\left (\frac {x}{c}\right )\right )^2}{c}-\frac {\left (a+b \coth ^{-1}\left (\frac {x}{c}\right )\right )^2}{x}+\frac {2 b \log \left (\frac {2}{1-\frac {c}{x}}\right ) \left (a+b \coth ^{-1}\left (\frac {x}{c}\right )\right )}{c}+\frac {b^2 \text {Li}_2\left (1-\frac {2}{1-\frac {c}{x}}\right )}{c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c/x])^2/x^2,x]

[Out]

-((a + b*ArcCoth[x/c])^2/c) - (a + b*ArcCoth[x/c])^2/x + (2*b*(a + b*ArcCoth[x/c])*Log[2/(1 - c/x)])/c + (b^2*
PolyLog[2, 1 - 2/(1 - c/x)])/c

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 6021

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6039

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m
 + 1)/n] - 1)*(a + b*ArcTanh[c*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[S
implify[(m + 1)/n]]

Rule 6055

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6131

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \tanh ^{-1}\left (\frac {c}{x}\right )\right )^2}{x^2} \, dx &=\int \left (\frac {\left (2 a-b \log \left (1-\frac {c}{x}\right )\right )^2}{4 x^2}+\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (1+\frac {c}{x}\right )}{2 x^2}+\frac {b^2 \log ^2\left (1+\frac {c}{x}\right )}{4 x^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {\left (2 a-b \log \left (1-\frac {c}{x}\right )\right )^2}{x^2} \, dx+\frac {1}{2} b \int \frac {\left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (1+\frac {c}{x}\right )}{x^2} \, dx+\frac {1}{4} b^2 \int \frac {\log ^2\left (1+\frac {c}{x}\right )}{x^2} \, dx\\ &=-\left (\frac {1}{4} \text {Subst}\left (\int (2 a-b \log (1-c x))^2 \, dx,x,\frac {1}{x}\right )\right )-\frac {1}{2} b \text {Subst}\left (\int (2 a-b \log (1-c x)) \log (1+c x) \, dx,x,\frac {1}{x}\right )-\frac {1}{4} b^2 \text {Subst}\left (\int \log ^2(1+c x) \, dx,x,\frac {1}{x}\right )\\ &=-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{x}\right )}{2 x}+\frac {\text {Subst}\left (\int (2 a-b \log (x))^2 \, dx,x,1-\frac {c}{x}\right )}{4 c}-\frac {b^2 \text {Subst}\left (\int \log ^2(x) \, dx,x,1+\frac {c}{x}\right )}{4 c}+\frac {1}{2} (b c) \text {Subst}\left (\int \frac {x (2 a-b \log (1-c x))}{1+c x} \, dx,x,\frac {1}{x}\right )+\frac {1}{2} \left (b^2 c\right ) \text {Subst}\left (\int \frac {x \log (1+c x)}{1-c x} \, dx,x,\frac {1}{x}\right )\\ &=\frac {\left (1-\frac {c}{x}\right ) \left (2 a-b \log \left (1-\frac {c}{x}\right )\right )^2}{4 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{x}\right )}{2 x}-\frac {b^2 \left (1+\frac {c}{x}\right ) \log ^2\left (\frac {c+x}{x}\right )}{4 c}+\frac {b \text {Subst}\left (\int (2 a-b \log (x)) \, dx,x,1-\frac {c}{x}\right )}{2 c}+\frac {b^2 \text {Subst}\left (\int \log (x) \, dx,x,1+\frac {c}{x}\right )}{2 c}+\frac {1}{2} (b c) \text {Subst}\left (\int \left (\frac {2 a-b \log (1-c x)}{c}-\frac {2 a-b \log (1-c x)}{c (1+c x)}\right ) \, dx,x,\frac {1}{x}\right )+\frac {1}{2} \left (b^2 c\right ) \text {Subst}\left (\int \left (-\frac {\log (1+c x)}{c}-\frac {\log (1+c x)}{c (-1+c x)}\right ) \, dx,x,\frac {1}{x}\right )\\ &=-\frac {a b}{x}-\frac {b^2}{2 x}+\frac {\left (1-\frac {c}{x}\right ) \left (2 a-b \log \left (1-\frac {c}{x}\right )\right )^2}{4 c}+\frac {b^2 \left (1+\frac {c}{x}\right ) \log \left (\frac {c+x}{x}\right )}{2 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{x}\right )}{2 x}-\frac {b^2 \left (1+\frac {c}{x}\right ) \log ^2\left (\frac {c+x}{x}\right )}{4 c}+\frac {1}{2} b \text {Subst}\left (\int (2 a-b \log (1-c x)) \, dx,x,\frac {1}{x}\right )-\frac {1}{2} b \text {Subst}\left (\int \frac {2 a-b \log (1-c x)}{1+c x} \, dx,x,\frac {1}{x}\right )-\frac {1}{2} b^2 \text {Subst}\left (\int \log (1+c x) \, dx,x,\frac {1}{x}\right )-\frac {1}{2} b^2 \text {Subst}\left (\int \frac {\log (1+c x)}{-1+c x} \, dx,x,\frac {1}{x}\right )-\frac {b^2 \text {Subst}\left (\int \log (x) \, dx,x,1-\frac {c}{x}\right )}{2 c}\\ &=-\frac {b^2}{x}-\frac {b^2 \left (1-\frac {c}{x}\right ) \log \left (1-\frac {c}{x}\right )}{2 c}+\frac {\left (1-\frac {c}{x}\right ) \left (2 a-b \log \left (1-\frac {c}{x}\right )\right )^2}{4 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{2 x}\right )}{2 c}+\frac {b^2 \left (1+\frac {c}{x}\right ) \log \left (\frac {c+x}{x}\right )}{2 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{x}\right )}{2 x}-\frac {b^2 \log \left (-\frac {c-x}{2 x}\right ) \log \left (\frac {c+x}{x}\right )}{2 c}-\frac {b^2 \left (1+\frac {c}{x}\right ) \log ^2\left (\frac {c+x}{x}\right )}{4 c}+\frac {1}{2} b^2 \text {Subst}\left (\int \frac {\log \left (\frac {1}{2} (1-c x)\right )}{1+c x} \, dx,x,\frac {1}{x}\right )-\frac {1}{2} b^2 \text {Subst}\left (\int \log (1-c x) \, dx,x,\frac {1}{x}\right )+\frac {1}{2} b^2 \text {Subst}\left (\int \frac {\log \left (\frac {1}{2} (1+c x)\right )}{1-c x} \, dx,x,\frac {1}{x}\right )-\frac {b^2 \text {Subst}\left (\int \log (x) \, dx,x,1+\frac {c}{x}\right )}{2 c}\\ &=-\frac {b^2}{2 x}-\frac {b^2 \left (1-\frac {c}{x}\right ) \log \left (1-\frac {c}{x}\right )}{2 c}+\frac {\left (1-\frac {c}{x}\right ) \left (2 a-b \log \left (1-\frac {c}{x}\right )\right )^2}{4 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{2 x}\right )}{2 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{x}\right )}{2 x}-\frac {b^2 \log \left (-\frac {c-x}{2 x}\right ) \log \left (\frac {c+x}{x}\right )}{2 c}-\frac {b^2 \left (1+\frac {c}{x}\right ) \log ^2\left (\frac {c+x}{x}\right )}{4 c}-\frac {b^2 \text {Subst}\left (\int \frac {\log \left (1-\frac {x}{2}\right )}{x} \, dx,x,1-\frac {c}{x}\right )}{2 c}+\frac {b^2 \text {Subst}\left (\int \frac {\log \left (1-\frac {x}{2}\right )}{x} \, dx,x,1+\frac {c}{x}\right )}{2 c}+\frac {b^2 \text {Subst}\left (\int \log (x) \, dx,x,1-\frac {c}{x}\right )}{2 c}\\ &=\frac {\left (1-\frac {c}{x}\right ) \left (2 a-b \log \left (1-\frac {c}{x}\right )\right )^2}{4 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{2 x}\right )}{2 c}-\frac {b \left (2 a-b \log \left (1-\frac {c}{x}\right )\right ) \log \left (\frac {c+x}{x}\right )}{2 x}-\frac {b^2 \log \left (-\frac {c-x}{2 x}\right ) \log \left (\frac {c+x}{x}\right )}{2 c}-\frac {b^2 \left (1+\frac {c}{x}\right ) \log ^2\left (\frac {c+x}{x}\right )}{4 c}+\frac {b^2 \text {Li}_2\left (-\frac {c-x}{2 x}\right )}{2 c}-\frac {b^2 \text {Li}_2\left (\frac {c+x}{2 x}\right )}{2 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 101, normalized size = 1.16 \begin {gather*} \frac {b^2 (-c+x) \tanh ^{-1}\left (\frac {c}{x}\right )^2+2 b \tanh ^{-1}\left (\frac {c}{x}\right ) \left (-a c+b x \log \left (1+e^{-2 \tanh ^{-1}\left (\frac {c}{x}\right )}\right )\right )+a \left (-a c+2 b x \log \left (\frac {1}{\sqrt {1-\frac {c^2}{x^2}}}\right )\right )-b^2 x \text {PolyLog}\left (2,-e^{-2 \tanh ^{-1}\left (\frac {c}{x}\right )}\right )}{c x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcTanh[c/x])^2/x^2,x]

[Out]

(b^2*(-c + x)*ArcTanh[c/x]^2 + 2*b*ArcTanh[c/x]*(-(a*c) + b*x*Log[1 + E^(-2*ArcTanh[c/x])]) + a*(-(a*c) + 2*b*
x*Log[1/Sqrt[1 - c^2/x^2]]) - b^2*x*PolyLog[2, -E^(-2*ArcTanh[c/x])])/(c*x)

________________________________________________________________________________________

Maple [A]
time = 0.58, size = 137, normalized size = 1.57

method result size
derivativedivides \(-\frac {\frac {c \,a^{2}}{x}+\frac {\arctanh \left (\frac {c}{x}\right )^{2} b^{2} c}{x}-2 \ln \left (1+\frac {\left (1+\frac {c}{x}\right )^{2}}{1-\frac {c^{2}}{x^{2}}}\right ) \arctanh \left (\frac {c}{x}\right ) b^{2}+b^{2} \arctanh \left (\frac {c}{x}\right )^{2}-\polylog \left (2, -\frac {\left (1+\frac {c}{x}\right )^{2}}{1-\frac {c^{2}}{x^{2}}}\right ) b^{2}+\frac {2 a b c \arctanh \left (\frac {c}{x}\right )}{x}+a b \ln \left (1-\frac {c^{2}}{x^{2}}\right )}{c}\) \(137\)
default \(-\frac {\frac {c \,a^{2}}{x}+\frac {\arctanh \left (\frac {c}{x}\right )^{2} b^{2} c}{x}-2 \ln \left (1+\frac {\left (1+\frac {c}{x}\right )^{2}}{1-\frac {c^{2}}{x^{2}}}\right ) \arctanh \left (\frac {c}{x}\right ) b^{2}+b^{2} \arctanh \left (\frac {c}{x}\right )^{2}-\polylog \left (2, -\frac {\left (1+\frac {c}{x}\right )^{2}}{1-\frac {c^{2}}{x^{2}}}\right ) b^{2}+\frac {2 a b c \arctanh \left (\frac {c}{x}\right )}{x}+a b \ln \left (1-\frac {c^{2}}{x^{2}}\right )}{c}\) \(137\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c/x))^2/x^2,x,method=_RETURNVERBOSE)

[Out]

-1/c*(c/x*a^2+arctanh(c/x)^2*b^2*c/x-2*ln(1+(1+c/x)^2/(1-c^2/x^2))*arctanh(c/x)*b^2+b^2*arctanh(c/x)^2-polylog
(2,-(1+c/x)^2/(1-c^2/x^2))*b^2+2*a*b*c/x*arctanh(c/x)+a*b*ln(1-c^2/x^2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x))^2/x^2,x, algorithm="maxima")

[Out]

1/4*(c^3*integrate(-log(x)^2/(c^3*x^2 - c*x^4), x) + c^2*(log(-c^2 + x^2)/c^3 - log(x^2)/c^3) - 4*c^2*integrat
e(-x*log(c + x)/(c^3*x^2 - c*x^4), x) + 2*c^2*integrate(-x*log(x)/(c^3*x^2 - c*x^4), x) + 2*c*(log(-c + x)/c^2
 - log(x)/c^2 + 1/(c*x))*log(-c/x + 1) - c*(log(c + x)/c^2 - log(-c + x)/c^2) - c*integrate(-x^2*log(x)^2/(c^3
*x^2 - c*x^4), x) - 2*c*integrate(-x^2*log(c + x)/(c^3*x^2 - c*x^4), x) + 4*c*integrate(-x^2*log(x)/(c^3*x^2 -
 c*x^4), x) - log(-c/x + 1)^2/x - (c*log(c + x)^2 - 2*((c + x)*log(c + x) - (c + x)*log(x) - c)*log(-c + x))/(
c*x) - (x*log(-c + x)^2 + x*log(x)^2 - 2*(x*log(x) - x)*log(-c + x) - 2*x*log(x) + 2*c)/(c*x) - 2*integrate(-x
^3*log(c + x)/(c^3*x^2 - c*x^4), x) + 2*integrate(-x^3*log(x)/(c^3*x^2 - c*x^4), x))*b^2 - a*b*(2*c*arctanh(c/
x)/x + log(-c^2/x^2 + 1))/c - a^2/x

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x))^2/x^2,x, algorithm="fricas")

[Out]

integral((b^2*arctanh(c/x)^2 + 2*a*b*arctanh(c/x) + a^2)/x^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {atanh}{\left (\frac {c}{x} \right )}\right )^{2}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c/x))**2/x**2,x)

[Out]

Integral((a + b*atanh(c/x))**2/x**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c/x))^2/x^2,x, algorithm="giac")

[Out]

integrate((b*arctanh(c/x) + a)^2/x^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+b\,\mathrm {atanh}\left (\frac {c}{x}\right )\right )}^2}{x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*atanh(c/x))^2/x^2,x)

[Out]

int((a + b*atanh(c/x))^2/x^2, x)

________________________________________________________________________________________